Building America Webinar: Central Multifamily Water Heating Systems

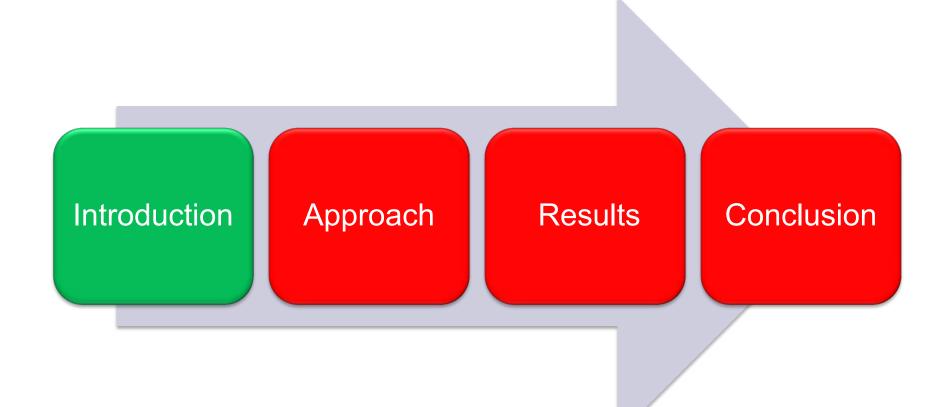
January 21, 2015

Energy-Efficient Controls for Multifamily Domestic Hot Water

Jordan Dentz and Eric Ansanelli The Levy Partnership, Inc. New York, NY

Advanced Residential Integrated Energy Solutions

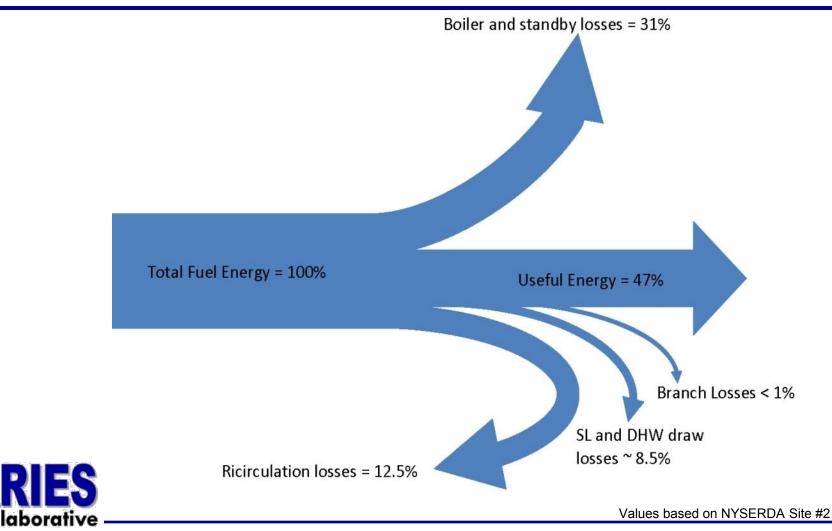
Research Sponsors



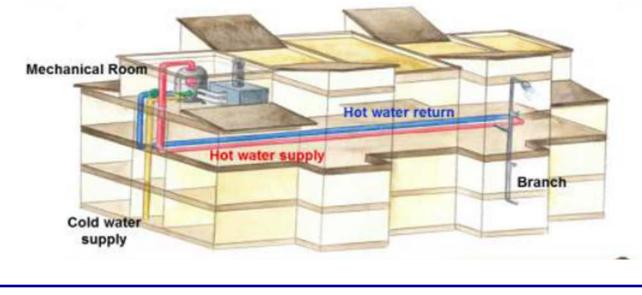
- The ARIES Collaborative is a Department of Energy, Building America research team led by The Levy Partnership.
- ARIES focuses on reducing energy use in new and existing residential buildings
- Research conducted by:



Energy Consumption

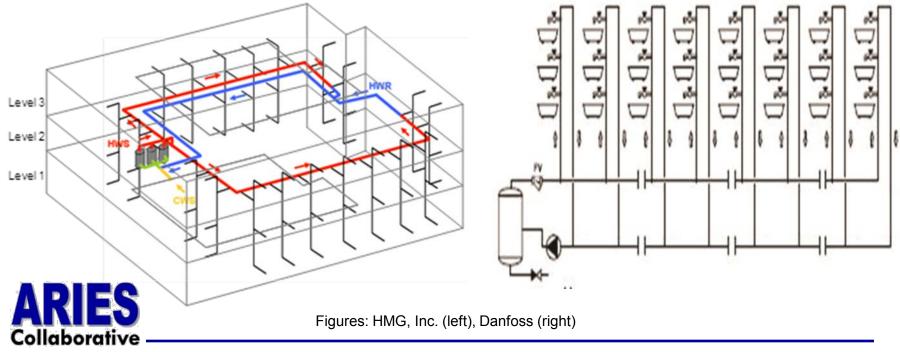

Water Heating is one of the largest multifamily energy uses.

Source: U.S. Energy Information Administration, 2009 Residential Energy Consumption Survey



Typical DHW energy distribution with continuous pump operation

Context


- Recirculating domestic hot water (DHW) systems are common in commercial and multifamily buildings
- Recirculation pumps often run 24x7 increasing energy consumption because the pipes radiate heat continuously, even during periods when there is no demand for hot water.

What is a DHW recirculation system?

Recirculation piping continually moves hot water from the point at which it is heated to the fixtures throughout the building, minimizing wait time.

Why a Recirculation Pump Is Needed

- A recirculation pump keeps the DHW piping loop hot as it gradually loses heat to the surrounding air, reducing wait time at the faucets.
- Without a recirculation pump, one has to wait for the cooled, stagnant water to be removed from the loop.

Types of DHW Control

- Timer Control
- Temperature Control
- Temperature Modulation Control
- Demand Recirculation Control
- Demand + Temperature Modulation Control

Timer Control

- Turns pump on and off according to a time schedule
- Time schedule off periods should approximate the peak DHW usage periods at the building.
- When a user demands hot water during an "off" period, they will waste water as they wait for the temperature to increase.

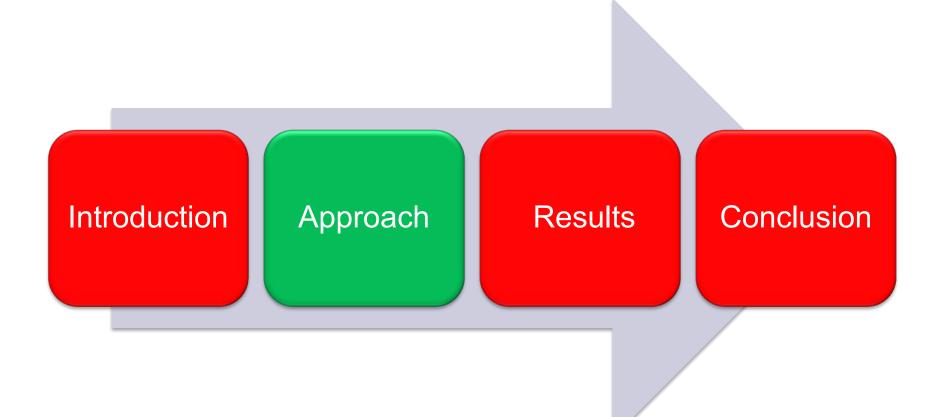
Temperature Control

- Automatically turns pump on and off based on temperature (usually 120°F) via a sensor on the return line.
- Less pump electricity, but keeps the distribution loop hot to maintain 120°F even when there is no demand.
- Often turned up past the supply temperature by building staff (effectively bypassing the control).

Temperature Modulation Control

- Modulates DHW supply temperature according to a daily schedule.
- Lowers supply water temperature during periods of low demand – late night and mid-day in residential buildings.

• Energy savings can be achieved via lower distribution losses, but pump runs continuously.



Demand Control

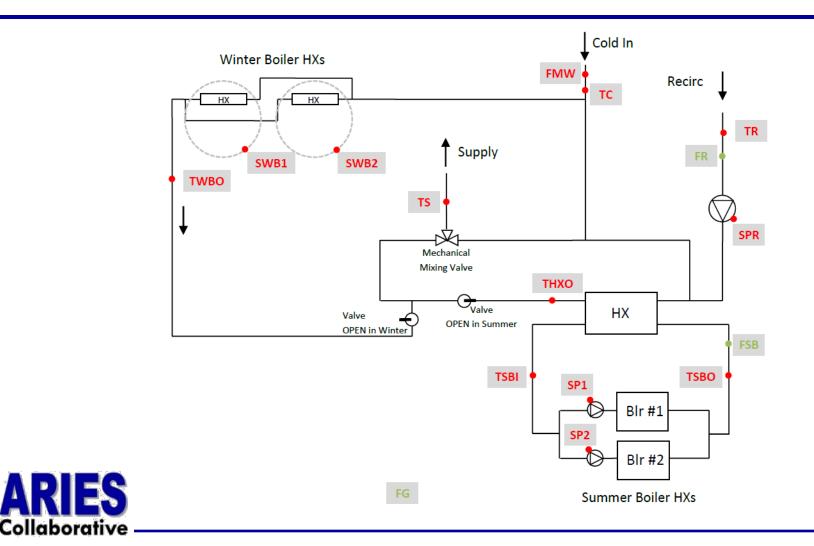
- Uses two pieces of information
 - 1. Real-time user demand (detects flow)
 - 2. Return water temperature (pump cuts in below 100°F).
- The pump only runs if both conditions above are satisfied or the pump has not run for five hours

Key Questions

- 1. How do control strategies compare to constant pumping and to each other in terms of energy savings?
- 2. What is the cost effectiveness of a multifamily DHW control system retrofit?
- 3. How might the interactive effects between DHW energy savings and the heating/cooling loads affect payback?
- 4. What potential complications might be encountered in getting these controls to work well?

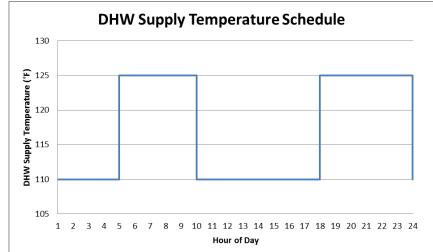
Previous Research

Report	Location	Building Characteristics	Control Type	Annual Savings
Benningfield (2009)	California	35 sites, 1,540 units	Demand	35 therms/unit
Enovative (2008)	Los Angeles, CA	5 story, 50 units	Demand	30%
Enovative (2009)	Los Angeles, CA	5 story, 189 units	Demand	12%
Enovative (2010a)	Escondido, CA	2 story, 8 units	Demand	18%
Enovative (2010b)	Irvine, CA	3 story, 21 units	Demand	16%
Enovative (2011)	Malibu, CA	30 units	Demand	15%
Goldner (1999)	New York City	6 sites, 5-6 stories, 25- 103 units	Timer (nighttime off)	6%
			Timer (peak hours off)	6%
			Return temperature	11%
HMG (2008)	Saint Helena, CA	2 story, 8 units	Demand	44%
			Temperature modulation	35%
			Timer (late evening off)	1%
	Oakland, CA	3 story, 121 units	Demand	5%
			Return temperature	-5%
			Timer (late evening off)	-1%

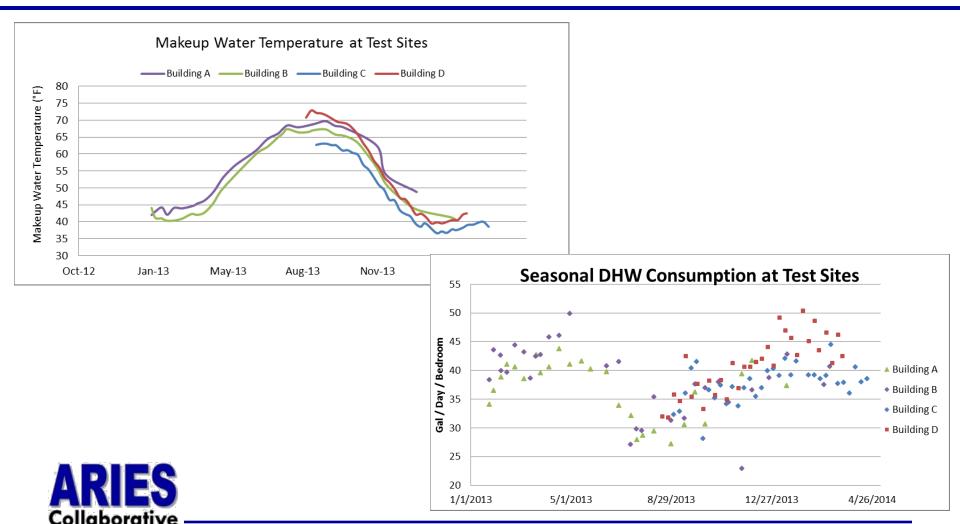


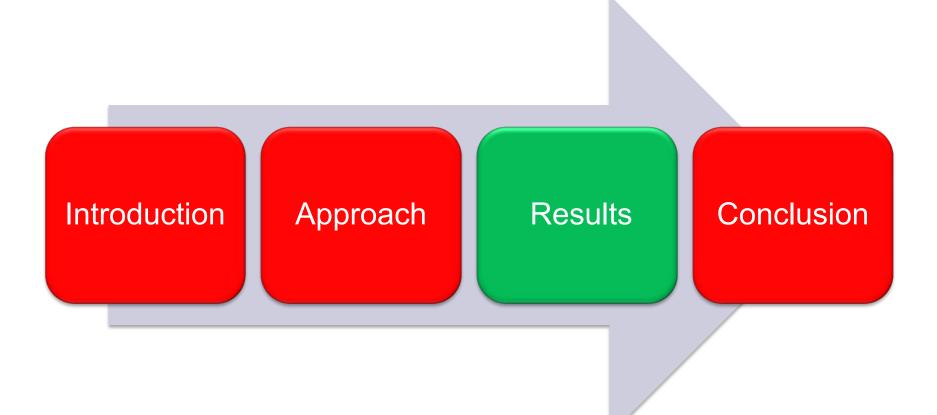
Building Characteristics

Property	Building A	Building B	Building C	Building D
Collection Period	January 2013 - January 2014	January 2013 - January 2014	August 2013 - April 2014	August 2013 - March 2014
Control Methods Tested	All	All	Demand Only	All
DHW System	Dedicated boiler and storage tank	Winter: tankless coil with mixing valve, Summer: dedicated	Dedicated boiler and storage tank	Dedicated boiler and storage tank
Number of Bedrooms	66	294	81	72
Number of Floors	7	15	3	3
Average Supply Temperature	135°F	119°F	159°F	131°F
Average DHW Gallons/Bedroom/Day	34	38	38	41
Measured Boiler Efficiency	82%	80%	83%	85%



Control and Monitoring Equipment


Test Strategy


- Demand recirculation
- Temperature modulation
 - 125°F for 4-5 hour morning and 6-7 hour evening "peaks"
 - 110°F midday and late night
- Demand with temperature modulation control
- Each strategy alternated for 1-3 weeks in succession with baseline mode through all seasons

Accounting for Changes in Temperature and DHW Use

Installed Costs

- Demand Recirculation Control: \$3,000
 - without new pump: \$2,500
- Temperature Modulation Control:
 - storage tank control: \$2,000
 - new electronic tempering valve: \$5,300

Supply & Return Temperatures

Property	Building A	Building B	Building C	Building D
Baseline	138°F/135°F	125°F/122°F	159°F/153°F	132°F/129°F
Demand Control	139°F/98°F	120°F/83°F	159°F/77°F	131°F/95°F
Temperature Modulation	130°F/128°F	117°F/114°F	-	128°F/125°F
Demand Control & Temperature Modulation	130°F/98°F	114°F/79°F	-	129°F/97°F
Makeup Water	57°F	53°F	48°F	55°F

Recirculation Pump Runtimes

• Average of 14 minutes/day

 99% reduction from continuous operation

Measured DHW Fuel Savings

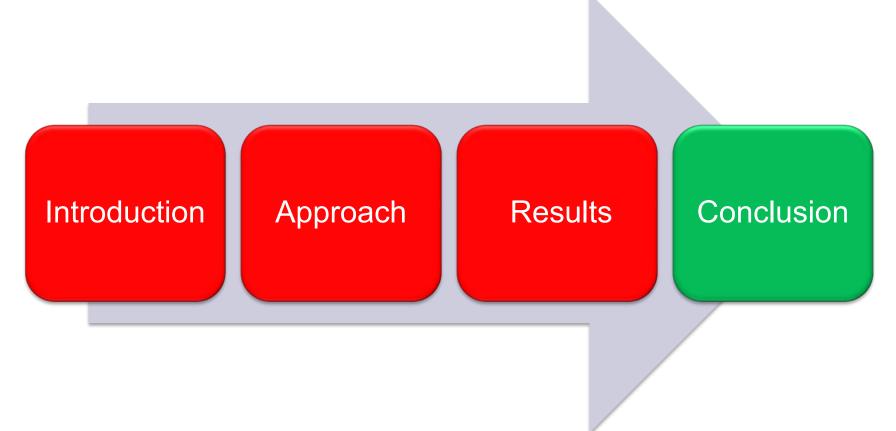
Property\Mode	Building A	Building B	Building C	Building D
Annual Baseline DHW Consumption	175 therms/br	94 therms/br	184 therms/br	112 therms/br
DHW Fuel Reduction with Demand Control	12% (20.4 therms/br)	9% (8.0 therms/br)	6% (10.3 therms/br)	7% (8.3 therms/br)
DHW Fuel Reduction with Temperature Modulation	2% (3.4 therms/br)	8% (7.8 therms/br)	-	2% (1.9 therms/br)
DHW Fuel Reduction with Demand Control & Temperature Modulation	15% (25.9 therms/br)	12% (11.3 therms/br)	_	15% (16.2 therms/br)

Space Conditioning Interactivity

Parameter	Least Effect	Middle Case	Greatest Effect
Heating Efficiency	85%	75%	65%
Heating Hours	2,686	3,263	4,074
Cooling Efficiency (Btu/Wh)	8	10	12
Cooling Hours	1,080	540	540
Percent Interaction	50%	75%	100%

For central scenario:

- Heat penalty was 37% of the DHW fuel reduction
- Average cooling bonus was
 10% of total dollar savings
- Reduced pump electricity contributed 25% to dollar savings

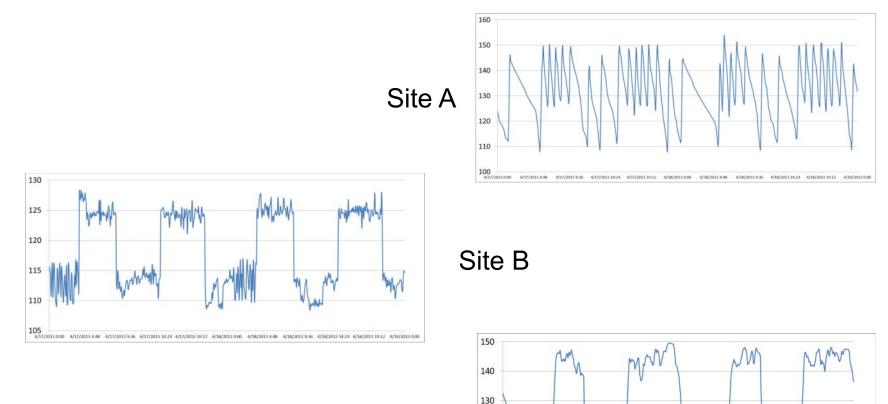


Simple Payback

Property	Building A	Building B	Building C	Building D
Annual DHW Cost (incl Recirc Pump Electricity)	\$15,900	\$31,200	\$16,400	\$9,200
Installed Cost of Demand/Temp Mod. Controls	\$3,000/\$2,000	\$2,500/\$5,300	\$3,000	\$3,000/\$2,000
Demand Control Payback	2.1	1.0	3.0	3.7
Temperature Modulation Payback	11.2	3.0	-	18.5
Demand Control & Temperature Modulation Payback	3.0	2.5	-	4.0

- Average annual cost savings, including interactive effects:
 - 9% with demand controls
 - 3% with temperature modulation controls
 - 12% with both combined
- Worst-case average payback: <4 years for demand control; 21 years for temperature modulation

Lesson: Demand Profiles



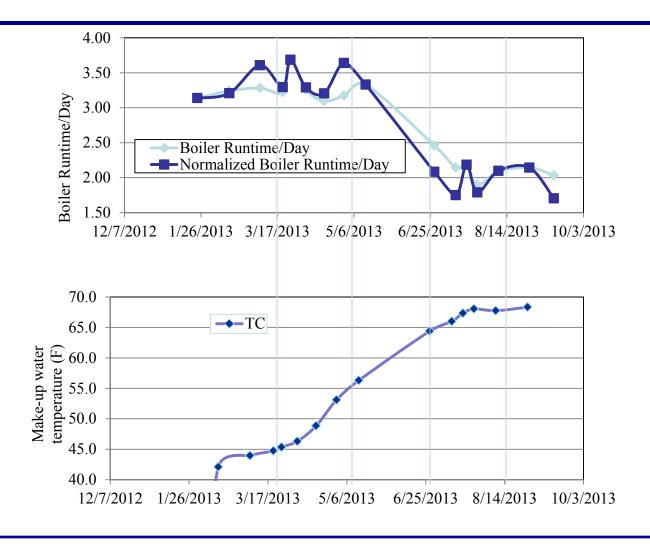
Lesson: Commissioning

Site D

120

110

100


MAA

1/25/2013 0:00 12/25/2013 4:4812/25/2013 9:362/25/2013 14:242/25/2013 19:21212/26/2013 0:00 12/26/2013 4:4812/26/2013 9:362/26/2013 14:242/26/2013 19:1212/27/2013 0:00

mm

Boiler Runtime vs. DHW Makeup Water Temperature

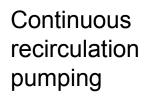
Comparison with Prior Studies

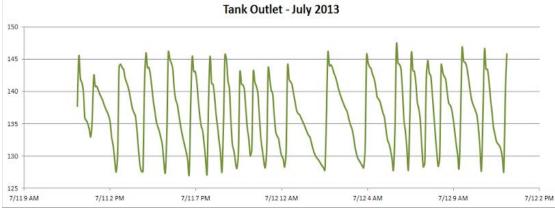
- Average 9% and 14% DHW fuel savings from demand and demand + temperature controls, respectively
- Prior studies showed 12-44% DHW fuel savings with demand recirculation
- Prior studies did not account for interactivity

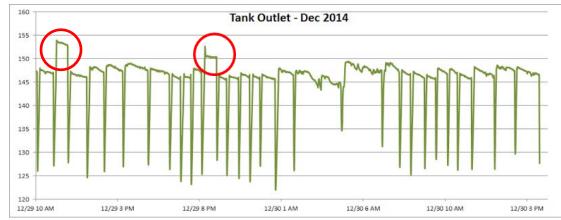
Mixing Valve Concerns

- Concerns:
 - Mechanical mixing valves
 - Internal bellows mechanism can fail due to thermal stress
 - Non-continuous flow can void warranty
 - Electronic mixing valves
 - Potential to send un-tempered hot water with non-continuous flow
 - Doesn't void warranty...

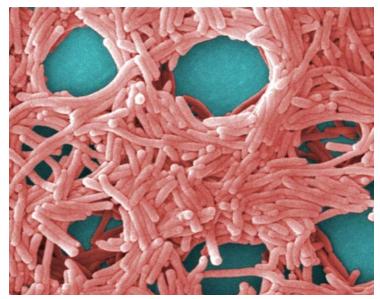
- Possible Solutions:
 - Mechanical mixing valves approved for non-continuous flow
 - Dummy recirculation loop




Electronic Mixing Valve Supply Temperatures


Electronic Mixing Valve: Highest Recorded 5-Minute Average Temperatures		
Continuous Flow	145°F	
Demand Recirculation	144°F	
Temperature Modulation	132°F	
Demand + Temp Modulation	147°F	

Storage Tank Overheating Issue?

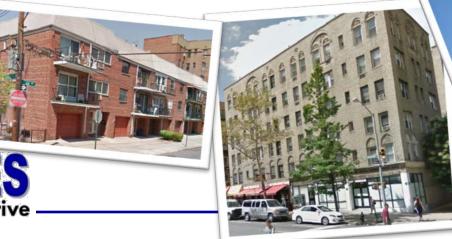


Demand-controlled recirculation pumping

Legionella?

- Temperatures of 77 to 108°F can provide favorable conditions for legionella growth
- OSHA discourages demand control; ENERGY STAR recommends it; California building code requires it for new construction
- Research needed to determine the relative risk of bacterial establishment in DHW recirculation loops with frequent exchange of water

Source: Wikipedia


Conclusion

- All DHW controls implemented without complaints
- DHW demand profiles did not show pronounced peaks and troughs constant, low supply temperature might be ideal
- Costs depend on existing DHW configuration
- Demand control paybacks of 1-4 years, also depends on building size

Next Step: 40-Building Rollout

- We're installing demand controls in 40 multifamily buildings and monitoring performance with NYSERDA.
- Buildings in New York welcome to participate
- Exploring optimized supply temperature and electronic mixing valve issues

Thank You.

Jordan Dentz Eric Ansanelli The Levy Partnership, Inc. 1776 Broadway, Suite 2205 New York, NY 10019 jdentz@levypartnership.com (212) 496-0800 Ext 130 eansanelli@levypartnership.com (212) 496-0800 Ext 170

THE LEVY PARTNERSHIP

Advanced Residential Integrated Energy Solutions