BUILDINGENERGY NYC

New Heat Pump Technologies to the Rescue

Jordan Dentz (The Levy Partnership) Evan Hallas (Taitem Engineering)

Curated by Elizabeth Engoren (EN-POWER)

Northeast Sustainable Energy Association (NESEA) September 24, 2020

About heat pumps

Four new heat pump typologies

Discussion

OVERVIEW

Why heat pumps?

- Beneficial electrification
- Can meet full heating and cooling demand
- Efficient
- Reliable, comfortable, quiet, etc.
- Many suppliers and choices

COMMON SIGHTINGS

MINI- and MULTI-SPLIT

6

CENTRAL VRF

Why not heat pumps?

- Electrical service
- Labor costs
- Intrusive for existing residents
- Design and other soft costs
- Finish/aesthetics of refrigerant lines for retrofit
- Refrigerant leak potential
- Location of outdoor units
- Roof space for PV
- ASHRAE 15

Technologies

The presenters have no financial interest in any of these products.

The heat pump with no outdoor unit

Ephoca – HPAC 2.0

The Heat Pump AC (HPAC) with no outdoor unit

Two 8" diameter penetrations

Ephoca – HPAC 2.0

- No outdoor unit
- Minimal distribution during installation
- No field refrigerant connections
- No ASHRAE 15 issues
- Possibilities for phased retrofit
- Reduced wall opening as compared to PTAC or AC Sleeve

Ephoca – HPAC 2.0 – Applications

Room-by-room Retrofit

PTAC/PTHP Sleeves

Through Wall AC Sleeves

New Penetrations

New Construction

a closer look...

Ephoca – HPAC 2.0

Ephoca – HPAC 2.0 – Performance

Manufacture reported performance with 8" ducts*

Heat Pump Heating

HSPF 10.3

Temp	COP	Capacity (Btu/hr)
47 F	3.58	7,520
17 F	1.86	4,930
5 F	1.41	4,133

BIN Analysis for Laguardia Average Annual COP 2.86 <u>Cooling</u> EER 11.1 Capacity 8,100 Btu/hr

Electric Resistance Heat Options 1 kW 2 kW

Ephoca – HPAC 2.0 – Heating Performance

Taitem's initial testing with 6" ducts*

Temp	СОР	Capacity (Btu/hr)	
47 F	2.5	5,920	
21 F	1.7	4,720	

Ephoca – HPAC 2.0 Electrical

Without Electric Resistance 15A/115V

With Electric Resistance 1 kW - 15A/208V 2 kW - 20A/208V

Ephoca – HPAC 2.0 Installed Cost

1 Bedroom Apartment – 650 ft² \$1,000 demo \$6,000 equipment cost (\$3,000 each) \$2,000 labor and misc. materials \$1,000 Design, Permit, Fees \$2,400 NYS Clean Heat Incentive (pending) \$7,600/apartment ~**\$11.70**/SF 50% lower installed cost than VRF?

Installed Cost Reduction over VRF

The mini-split that slides into a PTAC Sleeve

PTAC market

- 250k PTACs in NYC
- 100,000 all-electric PTACs in NYS
- 14% of Manhattan multifamily buildings are cooled with PTACs

US PTAC market; projections assume no disruptive technological change (NYSERDA 2018)

Fujitsu EZ Fit

No-see-um outdoor units

Fujitsu EZ Fit

Fujitsu EZ Fit

Fujitsu EZ Fit - tentative specs

Nominal cooling capacity	9,000 Btu/hr	12,000 Btu/hr	
Min-Max cooling capacity	2,728 - 9,889 Btu/hr	3,069-12,276 Btu/hr	
SEER	20	16	
EER	12.5	8	
Nominal heating capacity	10,900 Btu/hr	13,000 Btu/hr	
Min-max heating capacity	2,728-12,968 Btu/hr	3,069-14,663 Btu/hr	
Heating capacity at 5°F	9,050 Btu/hr	9,050 Btu/hr	
HSPF	10	9	
COP at 5°F	2.21	2.21	

Sample apartment - technology comparison

800 sf two-bedroom apartment modeled in eQuest

System	Htg efficiency	Cooling efficiency	Annual site energy (kbtu)	Annual emissions (kgC02e)	EZ Fit CO2 savings	Utility cost
EZ Fit	HSPF 10	SEER 20	11,464	971	n/a	\$774
PTAC with resistance heat	COP 1	EER 8.9	32,892	2,786	65%	\$2,217
РТНР	COP 2.7 (1 @ <40°F ambient)	EER 8.9	28,524	2,448	63%	\$1,923
PTAC with gas heat	82% AFUE	EER 8.9	42,430	2,649	60%	\$888

*Wall R value of 19, window U value of 0.67.

Sample apartment - 15 year PTAC cost comparison

	NPV	Installed cost	Year 1 energy cost	
Fujitsu EZ-Fit	\$15,457	\$4,200	\$773	
PTAC	\$33,286	\$1,000	\$2,217	
PTHP	\$29,105	\$1,100	\$1,923	
High efficiency PHTP	\$26,494	\$1,300	\$1,730	
Gas PTAC	\$13,932	\$1,000	\$888	Connection piping
			•	

Sleeve

Power cord

3% discount rate; not factoring in potential LL97 penalties

The heat pump that plugs into your hydronic distribution system

Aermec NRK/WWB

Air to Water Heat Pump with Water to Water Heat Pump Booster

A matched set of components to deliver high temp heating hot water

Aermec – NRK/WWB – Heating

Aermec – NRK/WWB – Cooling

Aermec – NRK/WWB - Applications

- Existing buildings with high temp hot water distribution
- Exsting hydronic fan coils
- Existing steam buildings converted to hot water
- Domestic hot water
- New construction

Electrify without ever entering an apartment?

Aermec – NRK/WWB – Heating Performance

BIN Analysis for NYC with Outdoor Reset Curve

Annual average heating COP of 2.52

Ambient T (F)	Supply Water T (F)	СОР	Outdoor NRK Input kW	Indoor WWB Input kW	Energy Output kW
0	176	1.52	24.8	27.5	79.7
14	160	1.90	22.6	23.0	86.7
20	152	2.17	19.6	21.1	88.2
30	138	2.36	19.0	18.3	88.2
55	131	2.94	13.0	17.1	88.5

Aermec NRK/WWB Installed Cost

\$15-\$25/SF depending on a number of factors

NYS Clean Heat Incentives may be available

The heat pump that pops into your window

Treau

- Over-the-window-sill heat pump
- User-installable
- Plugs into standard wall outlet like a window AC unit
- But does not block the window

Treau

- San Francisco start-up
- Availability projected 2021
- Field tests underway in California and New York
- Preliminary MSRP ranging from \$500 to \$2,000, depending on features and coming down over time
- Goal is a low-cost mass-market product

TREAU

DIY Electrification?

Treau

- Inverter driven, variable speed compressor
- Target efficiencies (based on manufacturer simulations)
 - Heating: COP 2.62 @5°F max. cap., HSPF 13.2
 - Cooling: SEER 21.1, EER 14.8
- R290 in sealed outside section refrigerant cycle
- Water/glycol loop between inside and outside sections

Note: Target efficiencies are based on simulations and not a promise of final specs

TREAU

Ambient	Capacity	Power	СОР	
$47^{\circ}F$	8,985 Btu/hr	584 W	4.51	
17 [°] F	6,679 Btu/hr	635 W	3.08	

Note: Target efficiencies are based on simulations and not a promise of final specs

Example Building Analysis

Example Building Analysis

	Space Heating	Space Cooling	
Existing Annual Energy Usage	17,598 Therms/yr	32,482 kWh/yr	
Existing Annual Emissions	102.8 tCO2e		
Electricity Rate	\$0.21/kWh		
Gas rate	\$1.08/therm		

	Ephoca HPAC 2.0	Fujitsu EZ Fit	Aermec NRK/WWB*	Treau
Assumed Efficiency	2.86 COP/11.1 EER	3.51 COP/12.5 EER	2.52 COP	4.03 COP/14.8 EER
Projected Annual Energy Usage	170,608 kWh/yr	140,941 kWh/yr	196,218 kWh/yr	122,139 kWh/yr
Projected Annual Emissions	49.3 tCO2e	40.7 tCO2e	47.3 tCO2e	35.3 tCO2e
Total Site EUI Savings	32.6 kBtu/sf/yr	35.1 kBtu/sf/yr	30.4 kBtu/sf/yr	36.8 kBtu/sf/yr
Total Annual Emission Savings	53.5 tCO2e	62.1 tCO2e	46.1 tCO2e	67.6 tCO2e
Annual LL97 Emissions Penalty Savings	\$14,351/yr	\$16,649/yr	\$12,368/yr	\$18,105/yr
Annual Energy Savings	-\$9,921/yr	-\$3,831/yr	-\$15,177/yr	\$28/yr
Total Savings	\$4,431	\$12,817	-\$2,809	\$18,133
Estimated Installed Cost per SF	\$13.00/SF	\$15.00/SF	\$20.00/SF	\$10.00/SF

*Heating savings only

Discussion

THANK YOU

Jordan Dentz jdentz@levypartnership.com The Levy Partnership 1776 Broadway, Suite 1250 New York, NY 10019

Evan Hallas <u>ehallas@taitem.com</u> Taitem Engineering 110 S Albany Street Ithaca, NY 14850

