Embodied Carbon in Construction

AIANY CRAN Carbon Leadership 2021 Jordan Dentz and Austin Izzo The Levy Partnership, Inc February 24, 2021

The Levy Partnership

Table of Contents

What & Why?

Where is EC in Construction?

Reduction Strategies

Tools and Resources

Wrap Up

What & Why?

What is Embodied Carbon (EC)?

By 2050 embodied carbon will make up **HALF** of Global Carbon Emissions in New Construction

https://architecture2030.org/new-buildings-embodied/

https://architecture2030.org/new-buildings-embodied/

The time is now!

- Example Office Building: In 2050, EC is 45% of emissions
- Lower operational emissions increases the importance of EC

Cumulative embodied and operational CO2e emissions for a new air-conditioned office over 60 years

Where is EC in Construction?

- Foundation
- Framing & Structural Components
- Enclosures
- Insulation

This Photo by Unknown Author is licensed under CC BY-SA

EC of Building Materials by Weight

The Embodied Carbon of Building Materials

All figures in kg CO2/kg of building material

Material category	Property	A1	Extraction	A2 Transport	A3 Mar	nufacturing
Structural	Approx. % of impact:	>90%		<5%	<10%	
steel ⁷	Source of impacts:	Steelm materia	aking (includes l mining, etc.)	Transportation to fabricator	Fabricat welding	tion (cutting, ;, shaping steel)
Concrete ⁸	Approx. % of impact:	>90%		<5%	<10%	
	Source of impacts:	Product aggrega admixtu materia	ion of cement, ite, water and ires (including l mining, etc.)	Transportation to concrete plant	Mix des concret	ign (recipe) and e mixing
Cement ⁹	Approx. % of impact:	<10%		<5%	>90%	
	Source of impacts:	Raw ma	terial mining	Transportation to cement kiln	Manufa	cturing cement
Clay	Approx. % of impact:	<5%		small	>95%	
masonry 10	Source of impacts:	Mining	of clay	Transportation and storage	Firing an operation	id factory ins
Glue	Approx. % of impact*	<10%		<5%	>90%	
laminated beam ¹¹	Source of impacts:	Wood n forestry lumber	nilling (includes harvest and shaping)	Transportation to a fabrication facility	Fabricat cutting,	tion (drying, gluing, pressing)

*not including emissions from bio-fuel combustion or within the broader forest context.

Buy Clean Washington Study by Kate Simonen et al.

Note: This figure is intended as a beginners guide. Detailed estimation involves considerable complexity for each product. Figures for metals assume virgin material.

Source: Inventory of Carbon & Energy (ICE) database.

Where is EC in Construction?

• EC can be found in every material used in construction

https://en.wikipedia.org/wiki/122_Leadenhall_Street

Embodied Carbon in the Leadenhall Building UK

Tackling Embodied Carbon in Buildings by The Crown Estate & UKGBC

Quantifying EC: Environmental Product Declarations

- Life cycle emissions per unit of material
- Importance: ubiquity and transparency

Beware:

- EPD ≠ Green
- Different calculation methods complicate comparisons
- Different materials use different units

EPD "Nutrition" Label	
Your Building Product	
Amount per Unit	
LCA IMACT MEASURES	TOTAL
Primary Energy (MJ)	12.4
Global Warming Potential (kg CO ² eq)	0.96
Ozone Depletion (kg CFC·11 eq)	1.80E-08
Acidification Potential (mol H+ eq)	0.93
Eutrophication Potential (kg N ⁻ eq)	6.43E-04
Photo-Oxidant Creation Potential (kg 03 eq)	0.121
Your Product's Ingredients: Listed Here	

EPD "nutrition label" for concrete mixes

Environmental Product Declaration

Life Cycle Impact Results (per m³) Declarat Unit 1 m² of 1.000 pc corecasts

OPERATIONAL IMPACTS (per m ¹)	Realdent
Plant Operating Energy Consumption (MJ)	11.8
On-Site Plant Fael Consumption (MJ)	172.9
Concrete Batch Water (m ²)	1.846-81
Vehicle and Equipment Wash Water (m [*])	6.26-01
On-Site Wester Disponent (kg)	0.68
ENVIRONMENTAL IMPACTS	
Total Primary Energy (MJ)	3.136
Climate Change (kg CO ₂ eq)	384
Ozone Depletion (kg CFC11 eq)	1.345-0
Acidification Air (kg SO ₃ eq)	2.41
Extrephication Air (kg N eq)	5.55
Photochemical Ozone Creation (kg 03 eq)	1.14
the second se	

About My Concernie Company

This is a summary description of the company instany, marketing products, precisionly or other pertonnet marketing information providing an insight into the organization and their products in suggest of marketings development, a

My Concrete Company XY2A East Sheet Anyolty, State were myconcretecotraty to

Environmental Product Declaration

https://www.master-builders-solutions.com/en-us/sustainability/quantifying-sustainability

Life Cycle Impact Results (per m³)

Declared Unit: 1 m³ of 3,000 psi concrete

OPERATIONAL IMPACTS (per m ³)	Residential Concrete
Plant Operating Energy Consumption (MJ)	15.8
On-Site Plant Fuel Consumption (MJ)	172.9
Concrete Batch Water (m ³)	1.94E-01
Vehicle and Equipment Wash Water (m ³)	6.2E-01
On-Site Waste Disposed (kg)	0.68
ENVIRONMENTAL DIRACTS	

ENVIRONMENTAL IMPACTS

Total Primary Energy (MJ)	3,136
Climate Change (kg CO ₂ eq)	364
Ozone Depletion (kg CFC11 eq)	1.34E-08
Acidification Air (kg SO ₂ eq)	2.41
Eutrophication Air (kg N eq)	5.55
Photochemical Ozone Creation (kg O3 eq)	1.14

Reduction Strategies

3 Guiding Principles

Use Smart

• Reuse, smaller footprint, program efficiency

Build Smart

• Alternative materials, efficient structure, life cycle thinking

Buy Smart

• Transparency, policy, codes/specs

Design Strategies: Concrete/Cement

- Avoid over-engineering (e.g. lighten slabs)
- Use timber
- Use smart concrete materials
 - Mixing methods
 - 56 or later day strength
 - Carbon sequestering/CO2 injected concrete technology
 - Portland Limestone Cement (PLC) instead of Portland Cement (PC)
 - Specify hard, clean & strong aggregates
- Consider innovative products: glass pozzolan, rice husk ash concrete, hempcrete
- Use regionally specific data
- Include environmental impact in specifications

©2019 2030 Inc./Architecture 2030. All Rights Reserved https://materialspalette.org/concrete/

Design Strategies: Steel

- Use shapes compatible with electric arc furnaces (rather than basic oxygen furnaces)
- Braced frames instead of moment resisting frames
- Joists and trusses reduce amount of steel compared to rolled shapes
- Avoid over-engineering
- Replace steel with timber
- Innovative products to look forward to: Hydrogen steel production
- Specify 90-100% recycled content where possible
- Choose North American

©2018 2030 Inc./Architecture 2030. All Rights Reserved https://materialspalette.org/steel/

Steel shapes

Hot Rolled Shapes made with electric arc furnaces: wide flange, angles, channels, rebar

http://www.chamberssteel.com/Wide %20Flange%20Beams.htm

el U Char

https://www.steelsections.com/steelsections/steelchannel-basics.html

https://www.engineeringtoolbox.com /american-wide-flange-steel-beamsd_1319.html

Hollow Structural Shapes Steel Decking made with basic oxygen furnaces

https://www.canam-construction.com/en/construction-products/steel-deck/

http://www.hgmetal.com/products/hollow-section/

Design Strategies: Insulation

- Design compact enclosures
- Minimize thermal weak spots
- Reduce plastic foams
- Specify different insulations for different uses
- Choose low EC materials
 - Bio-based & blown in
 - Wood fiberboard
 - Cellulose
 - Hemp
 - Cement bonded wood wool
- Review EPDs to ensure sustainable harvesting of natural products

Insulation Material	R-value R/inch	Density lb/ft³	Emb. E MJ/kg	Emb. Carbon kgCO ₂ /kg	Emb. Carbon kgCO ₂ / ft ² •R	Blowing Agent (GWP)	Bl. Agent kg/kg foam	Blowing Agent GWP/ bd-ft	Lifetime GWP/ ft²•R
Cellulose (dense-pack)	3.7	3.0	2.1	0.106	0.0033	None	0	N/A	0.0033
Fiberglass batt	3.3	1.0	28	1.44	0.0165	None	0	N/A	0.0165
Rigid mineral wool	4.0	4.0	17	1.2	0.0455	None	0	N/A	0.0455
Polyisocyanurate	6.0	1.5	72	3.0	0.0284	Pentane (GWP=7)	0.05	0.02	0.0317
Spray polyure- thane foam (SPF) – closed-cell (HFC-blown)	6.0	2.0	72	3.0	0.0379	HFC-245fa (GWP=1,030)	0.11	8.68	1.48
SPF – closed-cell (water-blown)	5.0	2.0	72	3.0	0.0455	Water (CO ₂) (GWP=1)	0	0	0.0455
SPF – open-cell (water-blown)	3.7	0.5	72	3.0	0.0154	Water (CO ₂) (GWP=1)	0	0	0.0154
Expanded polystyrene (EPS)	3.9	1.0	89	2.5	0.0307	Pentane (GWP=7)	0.06	0.02	0.036
Extruded polystyrene (XPS)	5.0	2.0	89	2.5	0.0379	HFC-134a ¹ (GWP=1,430)	0.08	8.67	1.77

https://www.buildinggreen.com/news-article/avoiding-global-warming-impact-insulation

More insulation does not always equal lower carbon footprint

Buildings as a Carbon Sink

- Insulation made from natural materials can sequester CO₂
- Buildings have potential to be a carbon sink
- Requires intentional use of low carbon materials throughout a building
- Operational performance need not be compromised
- Beware: All natural materials are not equal due to harvesting, processing and transportation. Transparency is key: Forest Stewardship Council, Declare labels

Case Study: Closed Cavity Roof Insulation Retrofit by New Frameworks

NESEA: Embodied Carbon in Materials: Real Steps to Drawing Down Carbon in our Buildings

Design for Deconstruction/Reuse

- Building re-use has potential to reduce EC
- Document materials and methods
- Design for deconstruction
 - Reduce chemical connections
 - Accessible connections
 - Mechanical fasteners
 - Simplicity
 - Separate systems

Tools and Resources

"In order for action to scale, we need easy access to data and tools" Kate Simonen, CLF

Estimating Embodied Carbon

- Design LCA Tools
 - Athena Impact Estimator
 - SF-2050
 - eTool (LCA)*
 - One Click I CA*
 - Tally (Revit application)*
- Carbon Accounting Tools
 - EC3 Tool uses EPDs to guide procurement
 - Specialty tools: Beacon (Revit plug-in), Woodworks, climate earth, etc.
- Material Databases
 - Carbon smart materials palette
 - The Quartz Project
 - Ecological Building Network (EB Net) ٠
 - Building for Environmental and Economic Sustainability (BEES)
 - Bath Inventory of Carbon and Energy (ICE) ٠

https://materialspalette.org/

* = payment required

Embodied Carbon in Construction Calculator (EC3)

Life Cycle Impact Results (per m²) Destared Unit 1 m² of 10,000 per concrete at 28 days

OPERATIONAL IMPACTS	PerformX ^{III} PECC10K
Plant Operating Energy (MJ)	38.6
On-Site Plant Feel Consumption (MJ)	11.1
Concrete Batch Water (m ²)	1.68E-01
Concrete Wash Water (m ²)	1.91E-02
On-Site Waste Disposal (kg)	0.0

1000
445
-1.31E.08
2.96
0.09
0.61

https://www.bimplus.co.uk/technology/free-embodied-carbon-calculator-help-move-greener-/

2019

1. Design & Plan Buildings

https://www.buildingtransparency.org/en/ec3-resources/ec3-downloads/

2. Find and Compare Products

https://www.buildingtransparency.org/en/ec3-resources/ec3-downloads/

3. Declare Products

Digitized version of data					Ċ
pulled from Environmental					-
Product Declarations			Q	A Warnings Cano	el
(EPDs)	ENVIRONMENTAL PRODUCT I	DECLARATION			
Declare Your Products	☆ AllMaterials ▼ / Concrete	 / Ready Mixes 			
Verify & Audit	Product Name *		Date of Issue *	Valid Until *	
User Groups	6RCA41425	DOWNLOAD	2019-09-04	2024-09-04	•
	EMBODIED ENVIRONMENTAL	. IMPACT	PRODUCT SPECIFICATION	S for "6RCA41425"	
	Declared Unit *	Mass per 1 m3 *	Product Description *	(Level of
	1 m3 Embodied GWP per 1 m3 *	2400 Kg	3/4" Agg, 40% RCA, 5" Slump		specificity of
	Embouleu offi per fino	reormanized scandard in			1 /
	259 kgCO2e	± 25 %	Industry standards		data within the
Range of	259 kgCO2e	± 25 %	Industry standards		data within the EPD
Range of kgCO2e from	259 kgCO2e	± 25 % ✓ Manufacturer Specific	Industry standards Compressive Strength 28D	Aggregate Size Max	data within the EPD
Range of kgCO2e from the material	259 kgCO2e	± 25 % ✓ Manufacturer Specific ✓ Plant Specific	Industry standards Compressive Strength 28D Compressive Strength Other	Aggregate Size Max Compressive Strength Other	data within the EPD
Range of kgCO2e from the material category	259 kgCO2e	± 25 % ✓ Manufacturer Specific ✓ Plant Specific ✓ Product Specific	Industry standards Compressive Strength 28D Compressive Strength Other 41.4 MPa	Aggregate Size Max Compressive Strength Other 56 d	data within the EPD
Range of kgCO2e from the material category	259 kgCO2e	± 25 % ✓ Manufacturer Specific ✓ Plant Specific ✓ Product Specific ↓ Just In Time	Industry standards Compressive Strength 28D Compressive Strength Other 41.4 MPa	Aggregate Size Max Compressive Strength Other 56 d Max Slump	data within the EPD
Range of kgCO2e from the material category	259 kgCO2e	± 25 % ✓ Manufacturer Specific ✓ Plant Specific ✓ Product Specific Just In Time 0 % Su Disclose	Industry standards Compressive Strength 28D Compressive Strength Other 41.4 MPa	Aggregate Size Max Compressive Strength Other 56 d Max Slump 6 in	data within the EPD
Range of kgCO2e from the material category	259 kgCO2e	± 25 % ✓ Manufacturer Specific ✓ Plant Specific ✓ Product Specific Just In Time 0 % Sp Disclose kgCO2e fr	Industry standards Compressive Strength 28D Compressive Strength Other 41.4 MPa	Aggregate Size Max Compressive Strength Other 56 d Max Slump 6 in	data within the EPD
Range of kgCO2e from the material category	259 kgCO2e	± 25 % ✓ Manufacturer Specific ✓ Plant Specific ✓ Product Specific Just In Time 0 % Sp kgCO2e fr product B	Industry standards Compressive Strength 28D Compressive Strength Other 41.4 MPa the slump ed rom EPD	Aggregate Size Max Compressive Strength Other 56 d Max Slump 6 in W/C Ratio	data within the EPD
Range of kgCO2e from the material category	259 kgCO2e	± 25 % ✓ Manufacturer Specific ✓ Plant Specific ✓ Product Specific Just In Tim 0 % Sp kgCO2e fi product fi with rang	Industry standards Compressive Strength 28D Compressive Strength Other 41.4 MPa USUMP ed rom EPD ge of n	Aggregate Size Max Compressive Strength Other 56 d Max Slump 6 in W/C Ratio SCM Max	data within the EPD
Range of kgCO2e from the material category	259 kgCO2e	± 25 % ✓ Manufacturer Specific ✓ Plant Specific ✓ Product Specific Just In Time 0 % Sp kgCO2e fr product B with rang uncertai	Industry standards Compressive Strength 28D Compressive Strength Other 41.4 MPa to Slump ed rom eline Size EPD ge of n nty	Aggregate Size Max Compressive Strength Other 56 d Max Slump 6 in W/C Ratio SCM Max	data within the EPD

Embodied Carbon in Construction (EC3) in Focus

- Utilizes robust dataset of construction material EPDs
- Applies conservative estimate for data gaps
- Displays uncertainty
- Allows users to combine materials for a whole building assessment
- Find and compare material choices for design and procurement stages
- Free, open source
- Connectivity to A360 & Tally

EC in Policy & Credentials

- LEED v4 offers points for WBLCA's and reduction of EC
- States and townships are beginning to incorporate EC into building codes
- Buy Clean California (BCCA)
- UN Sustainable Development Goals 9, 11, 12

https://www.cdrecycler.com/article/leed-usgbc-top-10-states-2019/

https://buyclean.org/buy-clean-california/

Wrap Up

Set Internal Targets

Use Smart

6

Advocate for Change & Transparency

Share Resources & Knowledge

Challenges in quantifying EC

- Data Gaps and barriers: availability, consistency, transparency
- Variation in the harvest and processing of natural materials
- Complexity of existing buildings
- Geographic and climatic conditions can limit material options
- Cost
- Understanding the impact of furnishings and MEP

What to Look for moving forward

- Policy drivers
- New technologies: bio-based insulation, steel manufactured with hydrogen, carbon sequestering concretes
- Increased awareness of EC calculators and tools

Resources

- <u>CLF</u>: Broad range of resources and guidance for reducing EC in the building industry. Creators of EC2 tool.
- Urban Land Institute EC Guide: Aimed at helping real estate developers understand and reduce embodied carbon
- Buy Clean Washington Study: A review and evaluation of policies and regulations to limit embodied carbon of structural materials used in state building projects
- Living Future Embodied Carbon Guidance: Guidance on calculating and reducing embodied carbon
- **ASTM2921-16a:** Guide to comparing WBLCAs
- International Green Construction Code (IGCC): recommended practices for reducing EC in built construction
- EC3 Tool Video Tutorials: Video guides on using EC3 tool

Thank You

Jordan Dentz

jdentz@levypartnership.com

Vice President

The Levy Partnership

Austin Izzo

aizzo@levypartnership.com

Building Sustainability Intern

The Levy Partnership

The Levy Partnership

Sources

- 1. <u>https://www.buildinggreen.com/feature-shorts/what-s-epd-environmental-product-declaration-faqs</u>
- 2. EPDs are the future of Building Industry, Whether You Like it or Not
- 3. https://carbonleadershipforum.org/guidance-on-embodied-carbon-disclosure/
- 4. https://www.buildinggreen.com/feature-shorts/what-s-epd-environmental-product-declaration-fags
- 5. The Urgency of Embodied Carbon and What You Can Do about It _ BuildingGreen
- 6. Whole Building Life Cycle Assessment Through LEED V4_GBCI
- 7. Buy Clean California Act
- 8. https://www.marincounty.org/depts/cd/divisions/sustainability/low-carbon-concrete-project
- 9. <u>https://sdgs.un.org/goals</u>
- 10. <u>https://architecture2030.org/new-buildings-embodied/</u>
- 11. Tackling embodied carbon in buildings
- 12. Greenprint-Embodied-Carbon-Report_FINAL
- 13. 106 Out of Site, In the Air
- 14. Embodied-Carbon-Industry-Task-Force-Proposals_June-2014_Final
- 15. <u>CLF EC101 Webinar</u>
- 16. Avoiding the Global Warming Impact of Insulation
- 17. The Embodied Carbon Conundrum_ Solving for All Emission Sources from the Built Environment New Buildings Institute
- 18. <u>https://carbonleadershipforum.org/what-we-do/initiatives/ec3/</u>
- 19. Heatspring: Embodied Carbon in Materials Powerpoint
- 20. <u>https://materialspalette.org/concrete/</u>
- 21. <u>https://materialspalette.org/steel/</u>
- 22. <u>https://materialspalette.org/insulation/</u>
- 23. Design_for_disassembly-guide
- 24. Reducing The Embodied Carbon of Construction Materials_CanadianArchitect
- 25. <u>https://materialspalette.org/carpet/</u>
- 26. https://www.metropolismag.com/interiors/interior-designers-climate-carbon/pic/101548/
- 27. Summary Report of Embodied Carbon Impacts of MEP Systems and TI_CLF
- 28. https://www.architectmagazine.com/technology/concrete-steel-or-wood-searching-for-zero-net-carbon-structural-materials_o
- 29. https://buildingtransparency-live-87c7ea3ad4714-809eeaa.divio-media.com/filer_public/b1/f6/b1f649b6-e73d-4a2b-9f97-e151f3b6de7d/ec3-key_features.pdf
- 30. Magwood Opppurtunities for carbon capttuer in buildings...